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The role of alterative splicing in adaptation

and evolution

Jukka-Pekka Verta ® "@* and Arne Jacobs ©2@*

Regulation of gene expression plays a central role in adaptive divergence and
evolution. Although the role of gene regulation in microevolutionary processes
is gaining wide acceptance, most studies have only investigated the evolution
of transcript levels, ignoring the potentially significant role of transcript
structures. We argue that variation in alternative splicing plays an important
and widely unexplored role in adaptation (e.g., by increasing transcriptome
and/or proteome diversity, or buffering potentially deleterious genetic variation).
New studies increasingly highlight the potential for independent evolution in
alternative splicing and transcript level, providing alternative paths for selection
to act upon. We propose that alternative splicing and transcript levels can pro-
vide contrasting, nonredundant mechanisms of equal importance for adaptive
diversification of gene function and regulation.

Going beyond gene transcription

Understanding the molecular mechanisms that link genetic and environmental variation to pheno-
typic variation is a key aspect of evolutionary and ecological research. To date, transcriptomic
studies have mostly focused on transcript level changes (‘gene expression’) to understand
the mechanisms underlying developmental processes, phenotypic plasticity, and adaptation
[1-3]. Yet, the regulation of genes goes far beyond their transcript levels. Despite our growing
knowledge on the mechanisms and functions of post-transcriptional gene regulation (see
Glossary) [4,5], little is known about the evolutionary dynamics and functional role of these
mechanisms over microevolutionary timescales and in varying ecological contexts. This opens
up an important question: have we been mostly ignoring an important puzzle piece in our under-
standing of how phenotypic diversity evolves and how species adapt to variable environments?

Alternative splicing is one of the multiple essential post-transcriptional mechanisms and
enables the generation of structurally variable transcripts from a single gene [i.e., isoforms;
e.g., through the inclusion or skipping of exons (e.g., cassette exons) or the retention of introns]
(Figure 1 and Box 1) [6-12]. While it is still debated if most splicing events are just noise and non-
functional [13], alternative splicing can increase transcriptome and proteome diversity and
regulate transcript levels following transcription (Figure 1) [4,5,7,14,15]. It has been shown that
alternative splicing is central to many organismal aspects, such as (i) development and physiology
[9]; (i) establishment of tissue identity [4,16]; (iii) that its disruption often leads to disease
[6,17-20]; and (iv) most importantly for the eco-evolutionary research, that it can rapidly evolve,
overcome functional constraints, and respond to environmental differences [10,21-25].

The role of alternative splicing in development, ecology, evolution, and plasticity
Since its discovery four decades ago, alternative splicing went from being seen as a curious phe-
nomenon to a fundamental regulatory mechanism in eukaryotes [4,5,16,26]. Developmental
genes are enriched for alternative splicing events (reviewed in [26]), and developmentally dynamic
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alternative splicing events can be conserved across species [16,22]. Yet, comparative studies
across deeply divergent species have also suggested that alternative splicing evolves more
quickly, is more species-specific than transcript level changes, and increases in complexity
with organismal complexity [22,27-29]. This led to the idea that alternative splicing plays a key
role in the evolution of phenotypic differences between species.

In contrast to deep evolutionary timescales, the role of alternative splicing in microevolutionary pro-
cesses is only beginning to be understood. Analyses of alternative splicing on microevolutionary
timescales paint a variable picture in which alternative splicing is not consistently more divergent
than transcript levels [21,30,31]. For example, the magnitude of changes in alternative splicing
is similar to the magnitude of changes in transcript levels in the postglacial divergences of the
salmonid fish Arctic charr (Salvelinus alpinus) [21] and cichlid fish adaptive radiations [30]. However,
because each gene can produce multiple isoforms [30], isoform diversity can potentially increase
more rapidly than divergence in transcript levels. The potential for the very rapid evolution of isoform
diversity (e.g., during domestication [8]) supports a role in adaptive diversification. Yet, comparative
studies of alternative splicing and transcript levels over varying evolutionary timescales are scarce,
leaving the relative paces of splicing and transcription level evolution largely unanswered.

In support of an adaptive role for splicing divergence, alternative splicing has been linked to adaptive
divergence and sometimes discrete phenotypes in several species (Table 1) [32-35]. For example,
the use of an altermative 5’ splice site of the gene MSX2A in freshwater three-spined stickleback
(Gasterosteus aculeatus) results in expression of a truncated loss-of-function transcript, leading to
shorter dorsal spines [32]. The differential inclusion of noncoding exons that increase protein
translation in the Agouti gene has been associated with lighter fur coloration in deer mice
(Peromyscus maniculatus) inhabiting sandy environments [33]. Expression from alternative
transcription start sites of the vgll3 gene associates with male puberty timing in Atlantic saimon
(Salmo salar), possibly through, for example, mRNA regulatory sites in the 5’ untranslated region
(UTR) or by changing the N-terminal protein sequence [34]. Exon skipping in the per2 gene
associates with increased body fat accumulation in cave ecotypes of the Mexican tetra
Astyanax mexicanus; alternative splicing excludes a ppary binding domain from the per2
protein, thus removing normal par2/per2 repression of the adiposity-controlling regulatory factor
ppary and increasing the expression of ppary target genes [35].

Changes in isoform diversity through alternative splicing have also been shown to play key roles in
phenotypic plasticity. For example, isoform expression of the tim gene in Drosophila melanogaster
switches according to the ambient temperature leading to temperature-dependent tim function
[23,36]. Cold stress induces the alternative splicing of hundreds of genes in skeletal muscle of fishes,
including tens of genes showing parallel isoform expression plasticity across deeply divergent
species [Atlantic killifish (Fundulus heterocilitus), three-spined stickleback, and zebrafish (Danio rerio)],
suggesting these are conserved plastic responses to cold acclimatization [37]. Alternative splicing
has also been identified as an important mechanism of plastic change in response to biotic factors
[10,24]. The relative contribution of changes in transcript splicing compared with transcript level for
stress responses seems to differ across taxa (e.g., with alternative splicing potentially playing a
stronger role in the environmental stress response of plants compared with animals [10]). However,
more widespread comparative studies are needed to confirm this.

Potential for independent evolution of splicing and transcript level

The adoption of large-scale splicing-aware analyses has revealed that across development,
different gene sets show changes in either transcript splicing or transcript levels, but rarely both
[9]. Of all alternatively spliced genes during mammalian organ development, an average of
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Glossary

Alternative splicing: a mechanism by
which structurally variable transcripts
are generated from a single gene
through inclusion/exclusion of exons or
introns, or changes in exon length.
Capacitor: a molecule that acts as a
mechanism that can buffer (conceal) the
effects of genetic variation on a
phenotype. When disturbed by, for
example, mutation, the molecule
releases genetic variation from buffering
that leads to the appearance of
phenotypic variation. Heat shock protein
90 (Hsp90) is a well-known example of a
potential capacitor.

Cassette exon: an exon in between
two other exons that can either be
included or excluded from a mature
mRNA to form two distinct isoforms.
Cis-regulation: gene regulatory
mechanisms that co-segregate with the
gene they influence; often described as
situated on the same chromosome and
closely linked such as enhancer and
promoter elements. Convey
allele-specific effects on gene
expression.

Complex traits: complex traits are
encoded by a large number of loci so
that their precise genetic architecture is
often unknown (e.g., human height).
Evolutionary capacitance: a
framework whereby genetic variation
can have either observable or concealed
effects on the phenotype. In the
concealed state, it allows for genetic
variation to accumulate without being
exposed to natural selection.
Expression quantitative trait loci
(eQTLs)/splicing quantitative trait
loci (sQTL): eQTL and sQTL describe
the statistical association between
genetic variation and quantitative
variation in the expression or splicing of a
gene, respectively. eQTL and sQTL can
be mapped to the genome and can be
due to cis- or trans-regulatory
mechanisms.

Genetic architecture: a concept that
describes the number of loci involved in
encoding variation in a trait, the
magnitude of their effects on the trait,
their frequencies in a population, and
their mutual relationships with each other
and the environment.

Isoform: a distinct structurally variable
transcript produced by a single gene
through alternative splicing.
Nonsense-mediated decay (NMD):
a highly regulated mechanism that
degrades defective pre-mRNA
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~10% changed in transcription level as well [16]. Such independence of alternative splicing and
transcript levels indicates that these two processes are controlled (at least partially) by distinct
mechanisms. Splicing and transcription, however, occur simultaneously within the cell nucleus
(co-transcriptional splicing), and splicing is dependent on mRNA transcription for efficiency
(reviewed by [5]). Due to their interconnectedness, the extent to which splicing and transcript
levels can evolve independently has been unclear.

Several recent studies suggest functionally nonredundant roles of splicing and transcript levels in
phenotypic diversification. Alternatively spliced genes often do not differ in transcript levels and in-
fluence different biological processes, such as in postnatal skeletal muscle development of mouse
(Mus musculus) [38], in the parallel ecological divergence of Arctic charr [21], between plastic
pea aphid (Acyrthosiphon pisum) morphs [24], and in response to heat stress in D. melanogaster
[36], or between sexes in three bird species (mallard duck Anas platyrhynchos, turkey Meleagris
gallopavo, and helmeted guineafowl Numida meleagris) [25]. Both mechanisms contribute inde-
pendently to complex trait associations in humans [17,39]. However, variation to this tendency
exists, and the two mechanisms were observed acting together in association with jaw morphol-
ogy between cichlid fish species [30] or in plastic changes in response to cold acclimation in fishes
(Atlantic Killifish, three-spined stickleback, and zebrafish) [37]. We suggest that the independent
evolution of alternative splicing and differential gene expression, affecting different gene sets with
nonredundant functions (contrasting scenario in Figure 2A), is a common and potentially important
phenomenon in plasticity and over microevolutionary timescales. However, further intra- and inter-
specific comparisons are needed to test under which circumstances splicing and transcript levels
coevolve to complement each other (complementary scenario in Figure 2A), or if this pattern is
highly idiosyncratic and largely dependent on, for example, the species, phenotype, genetic ar-
chitecture, and/or evolutionary history.

Genetic basis of variation in splicing and transcript level

Genetic mapping of splicing and transcript level variation in humans has shown that loci underlying
variation in splicing [called splicing quantitative trait loci (sQTL)] are largely distinct from those
influencing transcript level variation [expression (€)QTLs] [39]. Splicing variation in humans largely
maps to cis-regulatory variation (Figure 2B) and is constrained to coding sequences [39], espe-
cially to post-transcriptionally spliced introns [40]. A similar tendency is seen in Arabidopsis thaliana
[41,42]. While it has been observed that cis-regulatory divergence plays an important role in
adaptive divergence of transcript levels [43-46], it remains unknown to which extend cis-regulatory
evolution affects alternative splicing patterns on microevolutionary timescales.

Splicing is also influenced by trans-regulatory variation in RNA-binding proteins (RBPs) and
splicing factors that influence the splicing machinery [47] (Figure 2B), which has been shown to
be predominant for splicing evolution in sunflower domestication compared with cis-regulatory
divergence [8]. Such trans-effects have the potential to influence splicing in a large set of genes
through gene regulatory networks (e.g., [48,49]). For transcript levels, trans-effects can be due
to almost any gene expressed in a cell [50,51], which has been suggested to translate into a
polygenic architecture of traits influenced by transcript level variation [52]. Whether splicing
shows a similarly complex trans-architecture, and how this might influence trait evolution
mediated by splicing, remains largely unknown.

Splicing variation can also be due to epigenetic mechanisms, enabling rapid responses to
environmental change and potential routes for the decoupling of splicing and transcript level evo-
lution. For example, (i) nucleosome positioning demarcates exons and is independent from
mMRNA levels [53]; (ii) post-translational modifications of histones interact with RNA-binding factors
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molecules (e.g., pre-mRNA containing
premature stop codons).
Nucleosome: a basic unit of eukaryotic
chromatin that represents DNA that is
wrapped around one core histone
complex.

Pleiotropy: a concept that describes
the effects of variation in a single locus
(e.g., gene) on multiple distinct traits;
non-pleiotropic variation influences a
single trait, pleiotropic variation
influences multiple traits.
Post-transcriptional gene
regulation: an overarching term to
describe mechanisms that regulate
transcript levels and transcript structure
following the transcription of a gene
(e.g., through alternative splicing,
miRNAs, RNA editing, and RNA
modifications).

RNA-binding protein (RBP): RBPs
form ribonucleoprotein complexes with
single-stranded or double-stranded
RNA to regulate post-transcriptional
processes such as splicing, RNA
localization, and stability.

5’ splice site: sequence at the 5’ end of
an intron that is recognized by the
splicing machinery. Also referred to as
splice donor.

Splicing factor: RBPs that are directly
involved in regulating or mediating the
splicing of introns from pre-mRNA.
Trans-regulation: gene regulatory
mechanisms that are unlinked to the
gene they influence; often described as
diffusible molecules such as
transcription factors. Convey
non-allele-specific effects on gene
expression.
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Figure 1. Alternative splicing mechanisms and the molecular fates of isoforms. (A) Alternative splicing can be achieved through multiple distinct mechanisms that
include exon skipping, alternative 3" and 5' splice sites, intron retention, or a combination thereof. (B) Alternatively spliced transcripts can have two general molecular fates;
transcripts containing premature stop codons are degraded through nonsense-mediated decay; in-frame alternative splicing alters the function of the transcripts at the
post-transcriptional (MRNA localization and stability) and/or post-translational (protein sequence and modifications) level.

[54]; and (i) RNA methylation modulates accessibility of splicing factors to splice sites (e.g., [5,55]).
Furthermore, DNA methylation can alter alternative splicing patterns [5] and has been linked to splic-
ing differences between honey bee (Apis mellifera) castes [56]. Altogether, a more precise determina-
tion of the genetic and epigenetic architectures of splicing and transcript level variation is required to
fully understand the interdependence in the evolution of these traits.
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Box 1. Alternative mechanisms of isoform formation and their role in adaptation

Alternative splicing is not the sole mechanism creating variation in transcript structures, rather, the majority of human
isoform diversity between tissues involves alternative start and termination sites [73]. Alternative polyadenylation can lead
to transcripts with different 3’ untranslated regions (UTRs). Over half of human genes show alternative polyadenylation
(reviewed in [74]), and the mechanism can mediate association with complex traits [75]. Alternative polyadenylation from
intronic adenylation sites creates truncated proteins that have been associated with the development of cancer [76],
and the diversification of DNA- and RNA-binding proteins and protein—protein interactions [77].

Alternative transcription start sites can create alternative 5' UTRs and/or alter the coding sequence by inclusion or exclusion of
first exons. As a general rule, variation in 3'and 5' UTRs is created on the transcriptional level, but their effects are mainly post-
transcriptional. This is the case of the Agouti gene in deer mouse, for example, where a noncoding exon transcribed from an
alternative transcription start site increases protein translation efficiency, leading to lighter fur coloration in sandy envi-
ronments [33]. Both 3"and 5" UTRs are also dense in regulatory sites for RNA-binding proteins and regulatory RNAs, and
thus influence, for example, mRNA stability and translation. Alternative polyadenylation and transcription start site usage
can also create alternative polypeptide sequences with different characteristics as seen in the examples described in the main
text.

The adaptive potential of variation in splicing and transcript level is further influenced by their
pleiotropy. On the one hand, alternative splicing can be a mechanism of increasing transcrip-
tional diversity in genes that have pleiotropic effects, such as developmental or sexually selected
genes. For example, splicing might offer a resolution of sexual conflict through the generation
of sex-specific isoforms in pleiotropically constraint genes [25]. On the other hand, genetic
differences in the expression of alternative isoforms are relatively stable across tissues [39]
(i.e., having strong pleiotropic effects, compared with variation in transcript level). It remains

Table 1. A nonexhaustive list of cases in different species where alternative splicing has been associated with phenotypic plasticity or adaptive differences

Species Focus™ Splicing type™® Adaptation Tissue Refs
Arctic charr (Salvelinus alpinus) GW Various (NS) Benthic-limnetic divergence Skeletal muscle [21]
Atlantic salmon (Salmo salar) vgll3 Alternative 5" UTR/exon Age at maturity Testes [34]
Cichlids (Cichlidae) GW Various (NS) Trophic divergence Pharyngeal jaw [30]
Killifish (Fundulus heteroclitus) GW Various (NS) Cold acclimation Skeletal muscle [37]
Mexican tetra (Astyanax mexicanus) per2 ES Surface-cave adaptation Liver [35]
Stickleback (Gasterosteus aculeatus) MSX2A  A5'SS Dorsal spine length Multiple tissues [32]
Stickleback (G. aculeatus) GW Various (NS) Cold acclimation Skeletal muscle [37]
Zebrafish (Danio rerio) GW Various (NS) Cold acclimation Skeletal muscle [37]
Deer mouse (Peromyscus maniculatus) Agouti Alternative 5" UTR/exon Coloration Dorsal and ventral skin [33]
tissue
Duck (Anas platyrhynchos) GW Mostly ES/MXE Sex differences Spleen, gonads [25]
Helmeted guineafow! (Numida meleagris) GW Mostly ES/MXE Sex differences Spleen, gonads [25]
Turkey (Meleagris gallopavo) GW Mostly ES/MXE Sex differences Spleen, gonads [25]
Drosophila melanogaster GW Mostly ES Temperature response Whole body [36]
Human lice (Pedliculus humanus) GW Various (mainly ES) Head versus bodly lice Whole bodies (pooled) [70]
Pea aphids (Acyrthosiphon pisum) GW Various (Mainly ES and MXE)  Wing polyphenism; reproduction  Whole body [24]
Arabidopsis thaliana GW Mostly cis-regulatory Association with environment Leaves [42]
A. thaliana P5CS1 ES Proline accumulation Seedlings [71]
(drought adaptation)
Sunflowers GW Mostly IR Domestication Above-ground tissue [8,72]

@Abbreviations: A5'SS, alternative 5' splice site; GW, genome-wide; ES, exon skipping; IR, intron retention; MXE, mutually exclusive exons; Various (NS), splice type not
specified.
®See Figure 1 in the main text for types of alternative splicing.
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unclear how the pleiotropy of alternatively spliced gene functions and splicing variation impacts
evolutionary trajectories.

The fate and functional roles of alternative isoforms

A major challenge remains in understanding how the functions of different isoforms and polypeptide
variants differ. Efforts have been made to predict isoform functions [57], but the task will remain
challenging, particularly in non-model species for which isoform function cannot be easily tested.
Protein-coding isoforms might have functional roles as distinct from each other as independent
genes [15,26]. Documented adaptive mechanisms through alternative splicing include loss-of-
function [32], increased translation [33], and changes in protein interactions [35]. Recent work has
shown that polypeptide variants are expressed in proportion to their mRNA isoforms [7,14]. Similarly,
mMRNA level variation translates into protein level variation, albeit as a complex function involving
post-transcriptional buffering [17,58-61]. Regulatory variation in splicing and transcript level
therefore potentiates not only qualitative changes in the proteome (such as, e.g., different enzymatic
or regulatory functions, protein localization, or protein—protein interactions), but also evolutionary
fine-tuning of isoform levels.

An important characteristic of alternative splicing is that most genes express a single dominant
isoform and multiple alternative isoforms at much lower levels. This has been interpreted as
evidence for nonfunctionality of isoforms (e.g., [13]). However, we should not categorically
exclude lowly expressed isoforms as having feeble evolutionary significance. For example,
while most genes show consistent patterns of splicing between Drosophila genotypes in benign
environments, environmental stress greatly exacerbates splicing differences, thus revealing
hidden variation in splicing for selection to act upon [23,36]. Hence, to determine the functionality
of isoforms, screening isoform diversity across environments might provide additional evidence.
Furthermore, alternative isoforms that are lowly expressed are predicted to evolve in a nearly
neutral fashion, free from negative selection on the major isoform function, thus allowing for
exploring low-fitness areas of the genotype—phenotype map that can eventually become adap-
tive [62]. This resembles protein function diversification following gene duplication [63], whereby
redundancy in function allows for accumulation of nearly neutral variation that potentiates further
functional novelty [64,65]. Functional diversification of isoforms through such nearly neutral
processes tends to act on microevolutionary timescales [62].

All eukaryotes seem to have a common mechanism that protects organisms from the deleterious
effects of erroneous splicing, nonsense-mediated decay (NMD) (reviewed in [66,67])
(Figure 1). It has been proposed that NMD can act as a buffer allowing cells to safely experiment
on alternative splicing, which could ultimately lead to the emergence of new functional proteins
[5]. We bring forth the idea that this is akin to the theory of evolutionary capacitance, whereby
genetic variation can accumulate if its potentially harmful effects on the phenotype are buffered by
a molecular mechanism. There are multiple ways transcripts can evade NMD which varies
between cells, individuals, and environments [68], providing potential routes for buffered variation
in splicing. We hypothesize that NMD could serve as a capacitor that enables the hidden

Figure 2. Mechanisms of expression evolution through alternative splicing (AS) and transcript levels (DE). (A) Two hypothetical scenarios for the contrasting or
complementary coevolution of AS and DE at different stages of adaptation and/or evolution. For example, AS and DE can potentially influence different gene sets leading to
two general hypotheses on how gene regulation coevolves over microevolutionary timescales: splicing and DE can influence distinct gene sets so that their evolution shows
contrasting patterns, or shared gene sets, whereby they would play complementary roles in adaptation. Which of these two scenarios predominate is an outstanding
question. The extent of overlap between gene sets can differ between adaptive scenarios (plastic response versus evolutionary change) and along evolutionary
timescales (macro- versus microevolution). Note that these are not all of the possible scenarios. Circles denote hypothetical gene sets. (B) The ways in which AS and
DE evolve can involve both cis- and trans-acting mechanisms. If splicing and DE play complementary roles in adaptive processes, the mechanisms are predicted to co-
evolve to optimize the abundances of specific transcript isoforms. Note that, for simplicity, not all combinations of cis/trans/splicing/expression are drawn.
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accumulation of genetic variation in alternative splicing and potentiates future adaptation. This
process is distinct from the near neutrality of lowly expressed isoforms discussed previously, as
NMD potentiates the accumulation of hidden splicing variation that may be highly expressed or
otherwise have stronger deleterious effects. Therefore, selection on isoform expression level is
not necessary to gain adaptive benefit. Much work is needed to evaluate this hypothesis and
to identify the individual NMD factors that could function as capacitors.

Concluding remarks

The focus of most eco-evolutionary transcriptomic studies still lies on transcript levels; we argue that
alternative splicing plays an important but widely ignored role in adaptation and phenotypic change.
We highlight that isoform ratios and transcript levels have the potential to vary independently from one
another through their distinct (epi)genetic basis. The evolutionary implications for the decoupling of
splicing from transcription regulation are simple: evolution can act on transcript structures and
transcript levels separately, thus harmessing independent mechanisms for evolutionary change and
modulating different biological processes through distinct mechanisms.

We further argue for the need for a framework to test the selective function of alternative splicing in
a similar way to transcript level. Possible approaches to this end could lever on parallel evolution
[21,43] or comparative analyses in taxa where isoform usage can be analyzed on both short and
long timescales. The coevolution of these processes can possibly be approached through
studying regulatory networks as a compound phenotype of total and isoform expression [69],
rather than distinct networks. However, a lack of studies that assess the evolution of alternative
splicing and transcript levels across evolutionary timescales and on the same datasets limits
our understanding of the coevolution of splicing and transcription in eco-evolutionary contexts
(see Outstanding questions). Overall, we suggest that transcriptomic studies should more
regularly incorporate analyses of alternative splicing, ideally using long-read sequencing and/or
specific analytical approaches (Box 2), to gain a more complete understanding of the mecha-
nisms and genes involved in phenotypic evolution and environmental response.

Box 2. Analytical and technological approaches to study alternative splicing in non-model systems

Investigating alternative splicing is not a trivial undertaking as it is challenging to accurately reconstruct isoforms from short-
read sequencing data [78]. However, many different methods for identifying alternative splicing events from short-read
sequencing data have been developed. In general, these methods can be divided into isoform-based approaches, which
rely on the reconstruction and quantification of isoforms, and count-based methods, which quantify differences in read
counts between the studied units (e.g., exons or junctions) and are more powerful and accurate than the former [79].
Count-based methods can further be divided into exon-based methods, which quantify the differential expression of
individual exons between groups, or events-based methods, which quantify distinct splicing events (e.g., intron retention
or exon skipping [79,80]). Compared with exon-based methods, events-based methods have the advantage that they can
provide information on the type of splicing event [79].

Recent development of long-read cDNA and RNA sequencing has the potential to revolutionize the study of alternative
splicing, as full transcripts/isoforms can be completely sequenced, removing the need for complicated isoform reconstruc-
tion (e.g., [78,81-83]). Similar to short-read sequencing data, multiple different approaches for studying alternative splicing
using long-read data have been developed over the last few years (e.g., [78,81-84]). While long-read sequencing has more
power and a higher accuracy, it remains more expensive and therefore out of reach for many research projects. However, as
mentioned previously, short-read RNA-seq data can still be effectively used to investigate alternative splicing in a wide range
of species (e.g., [16,21,24,30]) and provide a good first step to understand its role in ecology and evolution.

Similar to transcript level, advanced technological approaches also enable the investigation of alternative splicing on
the single-cell level (e.g., [85,86]), particularly using long-read single-cell sequencing, but this is more challenging and
inaccurate than expression level analyses due to high rates of read dropouts and potential mistakes in isoform quantification
[87]. However, understanding the changes in alternative splicing on the single-cell level will provide a deeper understanding of
how splicing changes on the tissue level are related to, for example, changes in tissue composition rather than alternative
splicing in individual cells, particularly in very heterogeneous tissues [16].
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Outstanding questions

Is alternative splicing evolving faster than
transcript levels, and how does this
differ across evolutionary timescales,
adaptive scenarios, and taxa?

What is the role of coevolution
of transcript splicing and level in
adaptive evolution? Does adaptation
lead to the optimization of the two
mechanisms with respect to one
another?

Through which mechanisms is
alternative splicing predominantly
contributing to adaptive phenotypic
differences: proteome diversification,
post-transcriptional regulation of tran-
script level, or some other?

What is the evolutionary potential
in alternative splicing, what are the
mechanisms that potentiate the
evolution of alternative transcripts
(e.g., cis- versus trans-regulation and
NMD), and how important are these
mechanisms in evolution?

Does alternative splicing play a role in
resolving evolutionary constraints in
pleiotropic genes? How does pleiotropy
in splicing variation impact the adaptive
role of altemative splicing?

Can NMD mediate evolutionary
capacitance? If so, which parts of
the NMD pathway function as poten-
tial capacitors?
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